
Crowdsourcing computing resources for shortest-path
computation

Alexandros Efentakis
Research Center “Athena”

Artemidos 6
Marousi 15125, Greece

efentakis@imis.athena-
innovation.gr

Dimitris Theodorakis
National Technical University

of Athens
15780 Athens, Greece

dth@atrion.gr

Dieter Pfoser
Research Center “Athena”

Artemidos 6
Marousi 15125, Greece
pfoser@imis.athena-

innovation.gr

ABSTRACT
Crowdsourcing road network data, i.e., involving users to collect
data including the detection and assessment of changes to the road
network graph, poses a challenge to shortest-path algorithms that
rely on preprocessing. Hence, current research challenges lie with
improving performance by adequately balancing preprocessing with
respect to fast-changing road networks. In this work, we take the
crowdsourcing approach further in that we solicit the help of users
not only for data collection, but also to provide us their computing
resources. A promising approach is parallelization, which splits the
graph into chunks of data that may be processed separately. This
work extends this approach in that small-enough chunks allow us
to use browser-based computing to solve the pre-computation prob-
lem. Essentially, we aim for a Web-based navigation service that
whenever users request a route, the service uses their browsers for
partially preprocessing a large, but changing road network. The
paper gives performance studies that highlight the potential of the
browser as a computing platform and showcases a scalable ap-
proach, which almost eliminates the computing load on the server.

Categories and Subject Descriptors
G.2.2 [Graph Theory]: Graph algorithms

General Terms
Algorithms

Keywords
Graph Separators, Shortest Path, Preprocessing, Crowdsourcing

1. INTRODUCTION
Crowdsourcing is a process that outsources tasks to a distributed

group of people. It affects the present context in two ways. For
once, the focus of this work is how to deal with constantly chang-
ing road networks in the context of shortest-path (SP) computation,
and, secondly, on how to utilize the computing resources controlled
by the crowd in the process.

The single-pair shortest path (SPSP) problem of finding an ex-
act shortest path of length d(s, t) between a source s and target t

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGSPATIAL GIS, November 6-9, 2012. Redondo Beach, CA, USA
Copyright 2012 ACM 978-1-4503-1691-0/12/11 ...$15.00.

in a graph G = (V, E) is addressed by the classic Dijkstra algo-
rithm [3], which unfortunately requires few seconds on continental
sized road networks. More efficient algorithms involve a prepro-
cessing stage, which produces a (linear) amount of auxiliary data
that is then used to accelerate SP queries. While many effective
techniques exist, an important category of SP algorithms is based
on graph separators (GS). Examples of this category are HiTi [5]
and Customizable Route Planning (CRP) [1]. During preprocess-
ing, a multilevel partition of the graph is computed, in order to
create a series of interconnected overlay graphs. A query starts
at the lowest (local) level and moves to higher (global) levels as
it progresses. When considering frequent updates to the road net-
work (e.g., OpenStreetMap), GS methods have the advantage that
changes remain local and therefore have limited impact on the over-
all SP computation.

Another advantage of GS approaches is that their preprocess-
ing may be easily parallelized, since during preprocessing each
thread needs to have access only to a limited portion of the road
network. Hence, CRP significantly reduced its preprocessing time,
when tested on a typical multicore workstation.

The objective of this work is to embrace change and trivialize the
preprocessing stage. By defining an architecture that would allow
us to use Web-browsers as a computing platform, we effectively
delegate the task of incorporating the change back to the user and
crowdsource not only the updates to our dataset but also the respec-
tive computing resources needed to deal with the consequences of
such a change. Our system architecture is able to distribute typical
GS preprocessing to an unlimited number of Web-clients. All pre-
processing takes place on the clients, with the server only distribut-
ing data and gathering results from clients. What is more impres-
sive, instead of setting up dozens of clients running custom OSes,
we use Web-browsers and Javascript as our computing platform.
To the best of our knowledge, this is the first work that advocates
such an approach. Our extensive experimentation will show that
even with a limited number of clients, we require significantly less
preprocessing time than most SP algorithms and still are able to an-
swer SP queries on continental sized road networks in almost 2ms.

The outline of this work is as follows. Section 2 describes our
system architecture and design. Experiments establishing the per-
formance characteristics of our system are given in Section 3. Fi-
nally, Section 4 gives conclusions and directions for future work.

2. CROWDSOURCING SHORTEST-PATH
PREPROCESSING

The contribution of this work is to showcase a system, which ef-
ficiently distributes GS preprocessing to multiple Web-clients. This
section provides the implemented architecture details and the nec-

Figure 1: System architecture. The server sends the cells’
graph to the Web-clients and Web-clients return results to the
server once they finish clique calculation
essary optimizations added to typical GS preprocessing in order to
adapt it to the distributed nature of such a system.

2.1 Graph separators
In GS approaches [1, 5] a partition C of the graph is com-

puted. Then, the preprocessing stage builds a graph H containing
all boundary nodes and boundary arcs of G. It also contains a clique
for each cell C: for every pair (u, v) of boundary nodes in C, a clique
arc (u, v) is created whose cost is the same as the shortest path (re-
stricted to C) between u and v. Note that H is an overlay: the
distance between any two nodes in H is the same as in G. In order
to perform a SP query between s and t, a unidirectional or bidi-
rectional version of Dijkstra’s algorithm must be run on the graph
consisting of the union of H, C(s) and C(t). To accelerate queries,
multiple levels of overlay graphs may be used, which is a common
accelerating technique for most partition-based approaches.

Since each clique is calculated by using only the inner edges
of C, GS preprocessing may be easily parallelized and each clique
calculation may be assigned to a different process, a fact which will
be exploited in our system architecture. The best SP query times
possible with pure GS was achieved by CRP, which expanded on
the ideas initially proposed in HiTi [5] and managed to achieve
query times of 0.72ms for the continental road network of Europe.

2.2 System architecture
In our simple system architecture, the road network graph is

stored on a server. Whenever a new Web-client connects, the server
sends one or more cells (the cell’s graph restricted to inner arcs of
the cell) to the client for processing. When the client finishes cal-
culating the clique for the specific cell(s) assigned to it, it returns
the results to the server through AJAX. The server always keeps
track of the either calculated or already assigned cells, so that when
the next client connects, it is assigned some unprocessed and unas-
signed cells for clique calculation (Fig. 1).

In terms of the server, the cells’ road network graphs are stored
in a database. We also use a key-value store as a caching layer,
so cells are preloaded in the cache to minimize accesses to the DB
server. We additionally use the combination of a Web/application
server, which receives requests from clients, assigns cells to them
and gathers their results. Results are also stored on the caching
layer for speed and efficiency. For a system with live traffic updates,
results will never have to be stored permanently on the database,
since they are valid for a very limited time (≈15min).

In terms of technical details, we exclusively used free tools for
our server implementation: MySQL as the back-end DB server,
REDIS as the caching layer and the combination of Nginx and Phu-
sion Passenger for our Web/application server combination. The
server application was written in Ruby-on-Rails.

2.3 Adapting road network preprocessing
Initially, to partition the graph G, we used METIS [6], a graph

partitioning tool used frequently in the context of SP computation
[4]. Since we will use multiple levels of overlay graphs, we create
nested partitions by using METIS in a top-down fashion.

In typical GS preprocessing [1], to calculate cliques we must
run a Dijkstra algorithm (restricted to each cell) from every bound-
ary node. Clique calculation here is done entirely in the client’s
browser with Javascript and the server only sends cells to the browser
and gathers the clique arcs calculated from clients once calculation
is finished. Therefore, to reduce network communication time, we
must minimize the data moved between the server and the Web-
clients. This can be done either by (a) algorithmic optimizations
and (b) network optimizations and batch grouping of data.

Algorithmic optimizations. The first necessary optimization
was nodes reordering, i.e., we reordered nodes so that nodeIDs
within a cell are consecutive. This way, we effectively minimize
the cell’s graph size sent to the client and the clique arcs size re-
turned back .

In GS approaches, overlay graphs of higher level partitions may
be computed by using the overlay graphs of lower levels to dramat-
ically reduce preprocessing time. In our case, this technique not
only reduces computation time on the Web-client but also signifi-
cantly reduces network traffic as well.

Contrary to CRP, which uses an adjacency matrix representation
of cliques for SP query efficiency, we resort to a adjacency list rep-
resentation of clique arcs and we report only distances of boundary
nodes that are direct descendants of the root of each Dijkstra al-
gorithm we run, leading to a 56-71% reduction of the number of
clique arcs created.

Network optimizations. Although the previous algorithmic op-
timizations reduce the overall size of cells and clique arcs, we can
further reduce network traffic by batch grouping cells and results.
Instead of the server sending a single cell to each client and then
collecting a single result, the server now sends more cells (in a
batch) to each Web-client. Moreover, by using JSON as our ex-
change format and enabling GZIP compression in our Web-server
we can further reduce network communication time, which was
necessary for adapting typical GS preprocessing to a crowdsourc-
ing context. Consequently by using all those optimizations, our
experiments will show that even with a limited nof clients, we can
achieve smaller preprocessing times than most other SP algorithms
and still achieve reasonable SP query times of almost 2ms.

3. EXPERIMENTS
The experimentation that follows assesses the performance of

our distributed browser-based approach for various partition sizes
(number of cells). We have experimented with 1-8 Web-clients to
showcase scalability. Our experiments will report total, network
communication and pure computation time, along with the Web-
clients’ memory usage and data sizes transmitted over the network.
Finally, we show SP query times to compare our method with state-
of-the-art GS techniques.

Our benchmark road network instance is the the European road
network with 18 million nodes and 42 million arcs made available
by PTV AG [2]. We experimented with, both, travel times and
travel distances. During our experiments, the total number of cells
per partition ranged from 32 to 131072.

Our experiments were conducted in a cloud environment using
Amazon Web Services and a total of 5 virtual machines. One of
them is the server and four of them are simulating Web-clients. All
VMs are Medium High-CPU 64-bit instances and employ 1.7GB
of memory, 350GB of storage and 2 virtual cores. The server VM

Figure 2: Effect of batch grouping of cells for varying partition
sizes and the whole road network (Travel times)

Figure 3: Effect of multiple Web-clients for varying partition
sizes for the whole road network and batch grouping of cells
(Travel times)
is running Ubuntu 11.10 and Web-clients are running Windows
Server 2008 R2 with two Google Chrome processes each, summing
up to 8 simultaneous Web-clients.

3.1 Overall performance
The first implementation we tested was the most straightforward

one in which we use the entire road network for every overlay
graph calculation for varying partition sizes. We used a single Web
client and no batch-grouping of cells. Results showed that without
batch grouping of cells or using intermediate overlay graphs, clique
calculation of high-level partitions (i.e., partitions with small num-
ber of cells), requires a total preprocessing time of more than 4h.
As far as the distribution of total time is concerned, for low-level
partitions, network communication is the main bottleneck of our
distributed browser-based approach. For medium to high-level par-
titions a small fraction of total time is devoted to network traffic
and computation time on the client remains the main bottleneck.

Batch grouping. To minimize network traffic time, we repeated
the above experiments for the lower-level partitions (since on those
partitions network traffic is the bottleneck), once again for the whole
road network, but this time batching cells so that each group of cells
fits within a 300KB implicit limit (see Fig. 2).

Results showed that for the lowest-level partition used (the 131072
partition) we can batch-group 64 cells within the 300KB limit (per
HTTP response from server). Therefore for this particular partition,
through batch grouping of cells we were able to reduce total time
from 27.8 min to 7.6 min, for a total speedup of 3.6. We also see
that through batch grouping of cells, lower-level partitions are now
faster to calculate than higher level partitions.

Multiple Web-clients. Using multiple Web-clients, we repeated
the above experiments using the previous batch-group settings for
1, 2, 4 and 8 Web-clients (see Fig. 3). It is evident that our ap-
proach scales very well for up to 8 clients. For 4 Web-clients we
get a speedup of 3.6 and adding another 4 Web-clients results in an
total speedup of 5.8. Combining, both, batch grouping and multi-
ple Web-clients, we can calculate any low-level partition clique, in
less than 2min by using 8 Web-clients, which is vast improvement
over the 27.8min worst initial case.

Using overlay graphs of lower level partitions. In those ex-
periments, we used four Web-clients and batched as many cells
as possible within the implicit limit of 300KB. We experimented
with four intermediate “helper” levels: The 131072 partition over-

Table 1: Number of batched cells for varying partition sizes
and helper partitions

helper partition cells # partition cells # grouped cells
128 32 1

1024 128 1
1024 256 1
1024 512 1
16384 1024 1
16384 2048 2
16384 4096 4
16384 8192 8

131072 16384 32

lay graph was used for calculating the overlay graph of the 16384
partition, the 16384 partition overlay graph was used for calculating
all overlay graphs for the 8192, 4096 and 2048 partitions, the 1024
partition overlay graph was used for calculating overlay graphs for
the 128, 256 and 512 partitions and the 128 partition overlay graph
was used for calculating the highest-level overlay graph of the 32
partition (Table 1 and Fig. 4).

Table 1 shows, that even when we use “helper” partitions, we
can no longer batch group cells for high-level partitions with less
than 2048 cells. Fortunately for all those high-level partitions, net-
work time is less than 13s for all sizes. Figure 4 also shows that
by using “helper partitions”, the total time is close to 1min for
all available partition sizes. Evidently, even with our distributed
browser-based GS preprocessing, computing the overlay graphs for
the lowest level is still the most time consuming process.

Figure 4: Total, computation and network communication time
for various partition sizes, using intermediate helper partitions,
four Web-clients and batch grouping of cells (travel times)

Conclusively, by using three intermediate “helper” partitions and
four Web-clients, we may calculate the 128 partition in 4min. To
the best of our knowledge, except CRP which has the fastest pre-
processing time of 1min, no other SP algorithm implementation
needs this little preprocessing time to provide an SP query time in
the range of 2ms. As such, our solution of using browser-based
computing provides comparable SP computation times.

Memory usage. During our experiments, when monitoring our
Web-clients VMs, memory usage never exceeded 150MB. There-
fore, our browser-based implementation has modest memory re-
quirements and hence may run on any commodity workstation.
Moreover, even our server VM with only 1.7Gb of main memory
could easily handle our continent-sized road network, since it dis-
tributed its computation load entirely to the Web-clients.

Network packets’ sizes. An important aspect of our distributed
browser-based SP preprocessing is the amount of data transmitted
over the network. The server sends the cells’ graph to the clients
and the clients return an adjacency list of clique arcs calculated for
their assigned cells. Both network communications use a JSON
representation of cells and results. As expected, each cell’s size
increases for higher-level partitions. Figure 5 shows the average
size in KB of a network packet sent from the server to the client for
varying partition sizes before and after enabling GZIP compression
on the Web-server.

For high-level partitions, an uncompressed JSON representation

Figure 5: A network packet’s size (batched cells) sent from the
server to the client for varying partition sizes using intermedi-
ate overlay graphs (before and after GZIP compression)

Table 2: SP query performance for 3 levels of overlay graphs.
Travel times Travel distances

SP Query Prepr.. SP Query Prepr.
cells # cells # cells time time time time
level 3 level 2 level 1 (ms) (min) (ms) (min)

32 512 16384 1.812 5.7 2.811 6.2
32 1024 16384 1.909 5.1 2.970 5.6
32 2048 16384 2.122 5.8 3.250 6.4
128 512 16384 2.191 4.4 3.598 4.9
128 1024 16384 2.145 3.9 3.557 4.3
128 2048 16384 2.176 4.6 3.602 5.1

of a cell’s graph has a size of almost 4MB for the 32 partition,
and 1MB for the 128 partition, which is above our 300KB implicit
limit. Fortunately, after enabling GZIP compression on the Web
server, we can further compress network packets sizes by a factor
of 6. With GZIP compression enabled, network packets (i.e., size of
each batched cell group) for all partitions up-until the 128 partition
are below 200KB.

The average size of results (i.e., JSON representation of an adja-
cency list of the clique arcs calculated on the Web-clients) remains
stable below 300KB. This is attributed to the arc reduction opti-
mization, nodes reordering and our adjacency list representation.

Travel distances. To evaluate the impact of a different metric on
our approach, we also experimented with travel distances for the
same European road network. Results showed that the total time
for computing travel distances is 10-15% higher than compared
to computing travel times, since travel distances overlay graphs in
lower and medium level partitions are denser (have 5% more arcs)
when compared to travel times graphs. Still, a 10-15% increase
translates to only 30s more computation time making our approach
also a contender for travel distance computation.

SP queries. Although our main focus was to distribute typical
GS preprocessing to multiple browsers, we also report how our pre-
processing results may be used for typical SP computation.

Our SP query experiments were performed on a 6-core AMD
Phenom II (3.3GHz) with 16Gb of main memory, running Ubuntu
12.04 64bit. Our source code was written in Oracle Java 7u4 and
we used only one core for SP computation. Query times for a set of
10,000 random SP queries for both travel times and distances are
presented in Table 2. Similar to CRP, we report the average time
required for outputting the shortest path’s length. We used 3 levels
of overlay graphs, which proved to provide sufficient acceleration
with reasonable preprocessing times. Preprocessing times are cal-
culated using 4 Web-clients. For 8 Web-clients preprocessing time
is smaller by a factor of 1.6.

Results show that with 3min (8 Web-clients) of distributed browser-
based preprocessing we can easily achieve SP query times of about
2ms, which is comparable to CRP, the state-of-the-art GS approach.
Our system may also support live updates. If a single arc weight
changes, we only need to recompute one cell on each level (taking
less than 2s).

4. CONCLUSION AND FUTURE WORK
This work introduced a novel approach for distributing SP pre-

processing to multiple Web-clients. Instead of using a dedicated
cluster of nodes connected to a network infrastructure, we use Web-
browsers and Javascript as our computing platform. All the neces-
sary computation work is distributed to the Web-browsers and the
server just transmits cells and collects their results. Hence, not only
the computation load on our server remains minimal but even the
Web-clients hardly experience any load, since each cell’s clique
calculation takes less than 2s and memory usage remains below
150MB. Therefore, our client-side approach may work on any con-
ventional workstation or current mobile device. Our extensive ex-
perimentation with a continent-sized road network showed that our
approach is not only feasible, but very fast and efficient as well.
With 8 Web-clients, preprocessing for a continent-sized road net-
work requires 3min and we can answer SP queries in almost 2ms.

Although our work is the first distributed SP preprocessing ef-
fort in which clients do not share any common data structures, the
true novelty of our work is the use of Javascript and Web-browsers
in the context of SP preprocessing. Javascript is still considered
a toy language, which is not truly capable of handling computing
intensive applications. Our work clearly demonstrated that this is
no longer the case. Furthermore, with the popularity of the Web,
researchers now have access to an unlimited pool of computing re-
sources and this work showcases plausible and cost effective ways
to do that. By setting up a minimal Web server and relying entirely
on open-source tools on a public Web service, we were able to cre-
ate our dedicated cluster of unlimited nodes within minutes. In
that spirit, we seriously hope we will encourage other researchers
to use Javascript and Web-browsers as a means to parallelize their
computing intensive problems.

Acknowledgments
The research leading to these results has received funding from the
European Union Seventh Framework Programme under projects
Initial Training Network “GEOCROWD” (http://www.geocrowd.
eu, grant agreement No. FP7-PEOPLE-2010-ITN-264994) and
“SimpleFleet” (http://www.simplefleet.eu, grant agreement
No. FP7-ICT-2011-SME-DCL-296423).

5. REFERENCES
[1] D. Delling, A. V. Goldberg, T. Pajor, and R. F. Werneck.

Customizable route planning. In Proceedings of the 10th
international conference on Experimental algorithms, 2011.

[2] C. Demetrescu, A. V. Goldberg, and D. Johnson. The shortest
path problem. Ninth DIMACS implementation challenge,
Piscataway, NJ, USA, November 13–14, 2006. Proceedings.
DIMACS Book 74. AMS , 2009.

[3] E. W. Dijkstra. A note on two problems in connexion with
graphs. Numerische Mathematik, 1:269–271, 1959.

[4] A. Efentakis, D. Pfoser, and A. Voisard. Efficient data
management in support of shortest-path computation. In
Proceedings of the 4th ACM SIGSPATIAL International
Workshop on Computational Transportation Science, CTS
’11, pages 28–33, New York, NY, USA, 2011. ACM.

[5] S. Jung and S. Pramanik. An efficient path computation model
for hierarchically structured topographical road maps. IEEE
Transactions on Knowledge and Data Engineering,
14:1029–1046, 2002.

[6] G. Karypis and V. Kumar. A fast and high quality multilevel
scheme for partitioning irregular graphs. SIAM J. Sci.
Comput., 20:359–392, December 1998.

